3rd place
1
$$\int_{-2}^{-1}\tan^{-1}{\sqrt{\frac{x+1}{x-1}}}dx$$
2
$$\int_{-\infty}^{\infty}\frac{\cos{2021x}}{1+x^2}dx$$
3
$$\int_0^{\frac{\pi}{2}}\frac{x}{\tan{x}}dx$$
4
$$\int_0^{\frac{5}{3}}\sqrt{25-9x^2}dx$$
semifinal
1
$$\int_0^{\infty}\Big(e^{-x-xe^{-xe^{-xe^{-\dots}}}}+e^{-x-xe^x}\Big)dx$$
2
$$\lim_{n\to\infty}\int_{-\infty}^{\infty}2n\sin{(x^{2n})}dx$$
3
$$\int_0^{\infty}\frac{\ln{x}}{(x+\sqrt3)^2+1}dx$$
4
$$\lim_{n\to \infty}\int_n^{n+2}\frac{dx}{n^{\sin{\pi x}}+2021}$$
5
$$\int\frac{x^2-1}{x\sqrt{x^2+4x+1}\sqrt{x^2+6x+1}}dx$$
6
$$\lim_{h\to 0^{+}}h\int_{-\infty}^{\infty}e^{-e^x-\pi h^2x^2}dx$$
final
1
$$\int_{-\infty}^{\infty}\frac{\sin{2x}\cos{x^{-1}}-\sin{x^{-1}\cos{2x}}}{2x^3-x}dx$$
2
$$\int_0^{2\pi}\sum_{n=0}^{\infty}\frac{2(-1)^n}{(n+\frac{1}{2})^2}\sin{\Big[\Big(n+\frac{1}{2}\Big)x\Big]}dx$$
3
$$\int_{-1}^1\frac{\sqrt{1-x^2}dx}{(\cosh{\sqrt{x}}+\cos{\sqrt{x}})^{\cosh{\sqrt{x}}-\cos{\sqrt{x}}}+1}$$
4
$$\lim_{n\to\infty}\frac{1}{n}\int_0^{\infty}\min{\Big(2, \max{(0, 4-\frac{x}{n}\big)}\Big)}dx$$
5
$$\int\frac{x}{x^2+x^3\tan^{-1}{x}+x^4+x^5\tan^{-1}{x}}dx$$
final
1
$$\int_{-\infty}^{\infty}\frac{2020^{-|x|}}{1+5^{\arcsin{(\sin^5{x})}}}dx$$
2
$$\int_1^2\biggl[\Big(e^{1-\frac{1}{(x-1)^2}}+1\Big)+\Big(1+\frac{1}{\sqrt{1-\ln{(x-1)}}}\Big)\biggl]dx$$
$$\text{By substituting }v=x-1 \text{ we get:}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,$$$$\int_1^2\biggl[\Big(e^{1-\frac{1}{(x-1)^2}}+1\Big)+\Big(1+\frac{1}{\sqrt{1-\ln{(x-1)}}}\Big)\biggl]dx\equiv\int_0^1\biggl[\Big(e^{1-\frac{1}{v^2}}+1\Big)+\Big(1+\frac{1}{\sqrt{1-\ln{v}}}\Big)\biggl]dv$$$$I=\int_0^1e^{1-\frac{1}{v^2}}dv+2\int_0^1dv+\int_0^1\frac{1}{\sqrt{1-\ln{v}}}dv=I_1+I_2+I_3$$$$\text{In }I_3\text{ let's substitute }t=\frac{1}{\sqrt{1-\ln{v}}}:\begin{gather}v=e^{1-\frac{1}{t^2}}\\\,\,\,\,\,\,\,\,\,dv=\frac{2}{t^3}e^{1-t^2}dt\end{gather}\Rightarrow I_3=2\int_0^1\frac{e^{1-\frac{1}{t^2}}}{t^2}dt$$$$\text{But }I_1=\int_0^1e^{1-\frac{1}{v^2}}dv=ve^{1-\frac{1}{v^2}}\Big|_0^1-2\int_0^1\frac{e^{1-\frac{1}{v^2}}}{v^2}dv=1-2\int_0^1\frac{e^{1-\frac{1}{v^2}}}{v^2}dv$$$$\text{Hence }I=1-2\int_0^1\frac{e^{1-\frac{1}{v^2}}}{v^2}dv+2x\Big|_0^1+2\int_0^1\frac{e^{1-\frac{1}{t^2}}}{t^2}dt=3$$
3
$$\int_0^{2\pi}\frac{\min{(\sin{x}, \cos{x})}}{\max{(e^{\sin{x}}, e^{\cos{x}})}}dx$$
4
$$\int_0^1\ln{x}\sin{(\ln{x})}dx$$
5
$$\int_0^1\ln^{2020}{x}\,dx$$