alints.com
Berkley Bee Rounds
3rd place
2

$$\int_{-\infty}^{\infty}\frac{\cos{2021x}}{1+x^2}dx$$

$$\int_{-\infty}^{\infty}\frac{\cos{2021x}}{1+x^2}dx=2\int_0^{\infty}\frac{\cos{2021x}}{1+x^2}dx\text{Let }I_0=\int_0^{\infty}\frac{\cos{tx}}{1+x^2}dx$$$$\text{Laplace transform for }I_0\text{is}\mathcal{L}\left\{I_0\right\}=\int_0^{\infty}e^{-gt}\int_0^{\infty}\frac{\cos{2021x}}{1+x^2}dx$$$$\text{Let's change integration order: }\mathcal{L}\left\{ I_0 \right\}=\int_0^{\infty}\frac{1}{1+x^2}\biggl(\int_0^{\infty}e^{-gt}\cos{tx}\,dt\biggl)\,dx$$$$\text{1st part of I is}I_1=\int_0^{\infty}e^{-gt}\cos{tx}\,dt=\frac{1}{x}e^{-gt}\sin{tx}\Big|_0^{\infty}+\frac{g}{x}\int_0^{\infty}e^{-gt}\sin{tx}dx=0-\frac{g}{x^2}e^{-gt}\cos{tx}\Big|_0^{\infty}-\frac{g^2}{x^2}\int_0^{\infty}e^{-gt}\cos{tx}dx$$$$I_1=\frac{g}{x^2}-\frac{g^2}{x^2}I_1\Rightarrow I_1=\frac{g}{g^2+x^2}$$$$\text{Hence }\mathcal{L}\left\{ I_0 \right\}=\int_0^{\infty}\frac{gdx}{(1+x^2)(g^2+x^2)}=\frac{g}{g^2-1}\int_0^{\infty}\frac{dx}{1+x^2}-\frac{g}{g^2-1}\int_0^{\infty}\frac{dx}{g^2+x^2}$$$$\mathcal{L}\left\{ I_0 \right\}=\frac{g}{g^2-1}\frac{\pi}{2}-\frac{1}{g^2-1}\frac{\pi}{2}$$$$I_0=\mathcal{L}^{-1}\left\{ \mathcal{L}\left\{ I_0 \right\} \right\}=\frac{\pi}{2}\mathcal{L}^{-1}\left\{ \frac{1}{g^2-1} \right\}-\frac{\pi}{2}\mathcal{L^{-1}}\left\{ \frac{1}{g^2-1} \right\}$$$$\text{But }\mathcal{L}^{-1}\left\{ \frac{g}{g^2-1} \right\}=\cosh{t}\,,\,\mathcal{L}^{-1}\left\{ \frac{1}{g^2-1} \right\}=\sinh{t}$$$$\Downarrow$$$$I_0=\frac{\pi}{2}(\cosh{t}-\sinh{t})=\frac{\pi}{2}\Big(\frac{e^t+e^{-t}}{2}-\frac{e^t-e^{-t}}{2}\Big)=\frac{\pi e^{-t}}{2}$$$$I_0(2021)=\frac{\pi e^{-2021}}{2}$$$$\text{Finally }\int_{-\infty}^{\infty}\frac{\cos{2021x}}{1+x^2}dx=2I_0(2021)=\pi e^{-2021}$$
semifinal
4

$$\lim_{n\to \infty}\int_n^{n+2}\frac{dx}{n^{\sin{\pi x}}+2021}$$

5

$$\int\frac{x^2-1}{x\sqrt{x^2+4x+1}\sqrt{x^2+6x+1}}dx$$

6

$$\lim_{h\to 0^{+}}h\int_{-\infty}^{\infty}e^{-e^x-\pi h^2x^2}dx$$

final
1

$$\int_{-\infty}^{\infty}\frac{\sin{2x}\cos{x^{-1}}-\sin{x^{-1}\cos{2x}}}{2x^3-x}dx$$

$$\int_{-\infty}^{\infty}\frac{\sin{2x}\cos{x^{-1}}-\sin{x^{-1}\cos{2x}}}{2x^3-x}dx=\int_{-\infty}^{\infty}\frac{\sin{\Big(2x-\frac{1}{x}\Big)}}{(2x-\frac{1}{x})x^2}dx$$$$\text{But }\frac{dx}{x^2}=d\Big(-\frac{1}{x}\Big)=d\Big(2x-\frac{1}{x}\Big)-2dx$$$$\Downarrow$$$$\text{With }t=2x-\frac{1}{x}:\int_{-\infty}^{\infty}\frac{\sin{\Big(2x-\frac{1}{x}\Big)}}{(2x-\frac{1}{x})x^2}dx=2\int_{-\infty}^{\infty}\frac{\sin{\Big(2x-\frac{1}{x}\Big)}}{2x-\frac{1}{x}}d\Big(2x-\frac{1}{x}\Big)-\int_{-\infty}^{\infty}\frac{\sin{\Big(2x-\frac{1}{x}\Big)}}{2x-\frac{1}{x}}2dx$$$$=2\int_{-\infty}^{\infty}\frac{\sin{t}}{t}dt-2\int_{-\infty}^{\infty}\frac{\sin{\Big(2x-\frac{1}{x}\Big)}}{2x-\frac{1}{x}}dx,\,\text{ where }2\int_{-\infty}^{\infty}\frac{\sin{t}}{t}dt=2\pi$$$$\text{But with }v=\frac{1}{2x}:I=\int_{-\infty}^{\infty}\frac{\sin{\Big(2x-\frac{1}{x}\Big)}}{(2x-\frac{1}{x})x^2}dx=2\int_{0}^{\infty}\frac{\sin{\Big(2x-\frac{1}{x}\Big)}}{(2x-\frac{1}{x})x^2}dx=4\int_0^{\infty}\frac{\sin{\Big(\frac{1}{v}-2v\Big)}}{(\frac{1}{v}-2v)}dv$$$$=4\int_{0}^{\infty}\frac{\sin{\Big(2v-\frac{1}{v}\Big)}}{(2v-\frac{1}{v})}dv=2\int_{-\infty}^{\infty}\frac{\sin{\Big(2v-\frac{1}{v}\Big)}}{(2v-\frac{1}{v})}dv,\,\text{ which is equivalent to }2\int_{-\infty}^{\infty}\frac{\sin{\Big(2x-\frac{1}{x}\Big)}}{(2x-\frac{1}{x})}dx$$$$\text{Finally }I=2\int_{-\infty}^{\infty}\frac{\sin{\Big(2x-\frac{1}{x}\Big)}}{(2x-\frac{1}{x})}dx=2\pi-2\int_{-\infty}^{\infty}\frac{\sin{\Big(2x-\frac{1}{x}\Big)}}{(2x-\frac{1}{x})}dx$$$$\Downarrow$$$$2I=2\pi\longrightarrow \int_{-\infty}^{\infty}\frac{\sin{2x}\cos{x^{-1}}-\sin{x^{-1}\cos{2x}}}{2x^3-x}dx=\pi$$
3

$$\int_{-1}^1\frac{\sqrt{1-x^2}dx}{(\cosh{\sqrt{x}}+\cos{\sqrt{x}})^{\cosh{\sqrt{x}}-\cos{\sqrt{x}}}+1}$$

final