alints.com
Simpliest integrals with quadratic trinomials are usually being reduced to well known forms.
$$\int\frac{Ax+B}{ax^2+bx+c}dx\longrightarrow \int\frac{A'u+B'}{au^2+m}du\,\,,\,\small{u=x+\frac{b}{2a}}$$ $$\int\frac{Ax+B}{\sqrt{ax^2+bx+c}}dx\longrightarrow \int\frac{A'u+B'}{\sqrt{au^2+m}}du\,\,,\,\small{u=x+\frac{b}{2a}}$$ $$\int (Ax+B)\sqrt{ax^2+bx+c}\,\,dx\longrightarrow \int Au\sqrt{au^2+m}\,\,du+\int B'\sqrt{au^2+m}\,\,du\,\,,\,\small{u=x+\frac{b}{2a}}$$ $$\int\frac{dx}{(x-\vartheta)\sqrt{ax^2+bx+c}} \longrightarrow -\int\frac{d\delta}{\sqrt{a'\delta^2+b'\delta+c'}} \,\,,\,\small{\delta=\frac{1}{x-\vartheta}}$$
$$\int\sqrt{a^2-x^2}dx=\frac{x\sqrt{a^2-x^2}}{2}+\frac{a^2}{2}\arcsin{\frac{x}{a}}$$ $$\int\sqrt{x^2\pm a^2}dx=\frac{x\sqrt{x^2\pm a^2}}{2}+\frac{a^2}{2}\ln{\big|x+\sqrt{x^2\pm a^2}\big|}$$