Tabular Integrals
$$\int\frac{dx}{x}=\ln|x|$$
$$\int x^n dx=\frac{x^n}{n+1}$$
$$\int a^x dx=\frac{a^x}{\ln{a}}$$
$$\int e^x dx=e^x$$
$$\int\cos{x}dx=-\sin{x}$$
$$\int \sin{x}dx=-\cos{x}$$
$$\int \frac{dx}{\cos^2{x}}=\tan{x}$$
$$\int\frac{dx}{\sin^2{x}}=-\cot{x}$$
$$\int\frac{dx}{x^2+a^2}=\frac{1}{a}\arctan{\frac{x}{a}}$$
$$\int\frac{dx}{a^2-x^2}=\frac{1}{2a}\ln\Big|\frac{x+a}{a-x}\Big|$$
$$\int\frac{dx}{\sqrt{a^2-x^2}}=\arcsin{\frac{x}{a}}$$
$$\int\frac{dx}{\sqrt{x^2\pm a^2}}=\ln\big|x\pm \sqrt{x^2\pm a^2}\big|$$
Changing a variable and decomposing the subintegral function are the keys to solving simple integrals.
2
$$\int \frac{\sqrt{x}+\sqrt[3]{x}}{\sqrt[4]{x}} dx$$
8
$$\int \frac{dx}{(x^2+1)(x^2-3)}$$
13
$$\int\frac{\sqrt{x^2+1}-\sqrt{x^2-1}}{\sqrt{x^4-1}}dx$$
20
$$\int\Big(\frac{2^{2x-1}-3^{2x+3}}{6^{2x}}\Big)dx$$
24
$$\int\frac{2^{2x}-1}{\sqrt{2^x}}dx$$
69
$$\int \frac{\sin{x}\cos{x}}{\sqrt{a^2\sin^2{x}+b^2\cos^2{x}}}dx$$
70
$$\int \cos{\alpha x}\sin{\beta x}dx$$
71
$$\int \cos{\alpha x}\cos{\beta x}dx$$
72
$$\int \sin{\alpha x}\sin{\beta x}dx$$
73
$$\int \sin^2{x}\cos{\alpha x}dx$$
74
$$\int \cos^3{x}\sin{\beta x} dx$$
82
$$\int\frac{\cos{x}dx}{1+\cos^2{x}}$$
96
$$\int\frac{\sin{x}\cos{x}}{\sqrt{3-\sin^4x}}dx$$
98
$$\int\frac{(x+\sqrt{\arctan{2x}})}{1+4x^2}dx$$
100
$$\int\frac{(x+\arcsin^3{2x})}{\sqrt{1-4x^2}}dx$$
101
$$\int\frac{(x+\arccos^{\frac{3}{2}}{x})}{\sqrt{1-x^2}}dx$$
102
$$\int x^2\sqrt{a^2+x^2}dx$$
103
$$\int x^2\sqrt{a^2-x^2}dx$$
104
$$\int x^2\sqrt{x^2-a^2}dx$$
109
$$\int\sqrt{x^2 \pm a^2}\,dx$$
110
$$\int\frac{dx}{\sqrt{y}},\,y=ax^2+bx+c, a \neq 0$$
112
$$\int\frac{x+1}{\sqrt{x^2+x+1}}d$$
115
$$\int\frac{x^3dx}{\sqrt{x^4-2x^2-1}}$$
116
$$\int\frac{x+x^3}{\sqrt{1+x^2-x^4}}dx$$
118
$$\frac{dx}{x^2\sqrt{x^2+x-1}}$$
119
$$\int\frac{dx}{(x+1)\sqrt{x^2+1}}$$
121
$$\int\frac{dx}{(x+2)^2\sqrt{x^2+2x-5}}$$
123
$$\int\sqrt{2+x+x^2}dx$$
124
$$\int\sqrt{x^4+2x^2-1}dx$$
125
$$\int\frac{1-x+x^2}{x\sqrt{1+x-x^2}}dx$$
129
$$\int\frac{\sqrt[3]{1+\sqrt[4]{x}}}{\sqrt{x}}dx$$
130
$$\int\frac{dx}{x\sqrt[4]{1+x^7}}$$
132