alints.com
Integration of trigonometric functions \(f(\sin{x}, \cos{x})\)
\(\circ\,\,\text{Universal trigonometric substitution }\,\,t=\tan{\frac{x}{2}}\)
$$\sin{x}=\frac{2\tan{\frac{x}{2}}}{1+\tan^2{\frac{x}{2}}}=\frac{2t}{1+t^2}$$ $$\cos{x}=2\cos^2{\frac{x}{2}}-1=\frac{2}{1+\tan^2{\frac{x}{2}}}-1=\frac{1-t^2}{1+t^2}$$ $$dt=\frac{d\frac{x}{2}}{\cos^2{\frac{x}{2}}}\Rightarrow dx=\frac{2dt}{1+t^2}$$
$$\text{I.}\,\,f(-\sin{x}, \cos{x})=-f(\sin{x}, \cos{x})\longrightarrow \cos{x}=t$$ $$\text{II.}\,\,f(\sin{x}, -\cos{x})=-f(\sin{x}, \cos{x})\longrightarrow \sin{x}=t$$ $$\text{III.}\,\,f(-\sin{x}, -\cos{x})=f(\sin{x}, \cos{x})\longrightarrow \tan{x}=t$$
$$\circ\,\,\text{Reducing the degree of}\,\sin{x}\,\,\text{and}\,\,\cos{x}$$
$$\sin^2{x}=\frac{1-\cos{2x}}{2}$$ $$\cos^2{x}=\frac{1+\cos{2x}}{2}$$ $$\sin{\alpha}\sin{\beta}=\frac{1}{2}[\cos{(\alpha-\beta)}-\cos{(\alpha+\beta)}]$$ $$\cos{\alpha}\cos{\beta}=\frac{1}{2}[\cos{(\alpha-\beta)}+\cos{(\alpha+\beta)}]$$ $$\sin{\alpha}\cos{\beta}=\frac{1}{2}[\sin{(\alpha-\beta)}+\sin{(\alpha+\beta)}]$$ $$\circ\,\,\text{Turning the numerator}\,f(x)\,\text{of function}\,\frac{f(\sin{x},\,\cos{x})}{g(\sin{x},\,\cos{x})}\,\text{into a combination like the folowing:}$$ $$\int\frac{a_1\sin{x}+b_1\cos{x}+c_1}{a\sin{x}+b\cos{x}+c}dx=Ax+B\ln{|a\sin{x}+b\cos{x}+c|}+C\int\frac{dx}{a\sin{x}+b\cos{x}+c}$$ $$\int\frac{a_1\sin^2{x}+2b_1\sin{x}\cos{x}+c_1\cos^2{x}}{a\sin{x}+b\cos{x}}dx=A\sin{x}+B\cos{x}+C\int\frac{dx}{a\sin{x}+b\cos{x}}$$ $$\int\frac{a_1\sin{x}+b_1\cos{x}}{a\sin^2{x}+2b\sin{x}\cos{x}+c\cos^2{x}}dx=A\int\frac{dz_1}{\frac{1}{a-\lambda_1}z_1+\lambda_1}+B\int\frac{dz_2}{\frac{1}{a-\lambda_2}z_2+\lambda_2}\quad-\quad\Large{^{z_i=(a-\lambda_i)\sin{x}+b\cos{x}}_{ \lambda_1,\,\lambda_2: (\lambda-a)(\lambda-c)=b^2}}$$ $$\small{*\,A,\,B,\,C\,\text{ are undefined cofficients found by differentiating both parts and equating}}$$